

21st Century CARDIOLOGY

Concise Communication Open Access

Why Angiotensin Receptor Blockers Might be Preferred Over Angiotensin Converting Enzyme Inhibitors in COVID-19 Management?

Mina T. Kelleni*

Pharmacology Department, College of Medicine, Minia University, Egypt

*Corresponding Author: Mina T. Kelleni, Pharmacology Department, College of Medicine, Minia University, Egypt; E-mail: mina.kelleni@mu.edu.eg

Received: 19 July 2021; Revision: 25 August 2021; Accepted: 28 August 2021; Published: 30 August 2021

Copyright: © 2021 Kelleni MT, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract:

A recent meta-analysis has suggested that angiotensin-converting enzyme inhibitors might possess more benefit over angiotensin receptor blockers regarding the likelihood of COVID-19 infection and non-COVID pneumonia induced mortality. We present a clinical and pharmacological COVID-19 contradictory point of view, and we also recommend extreme caution when clinical recommendations are considered.

Keywords: COVID-19; Angiotensin converting enzyme inhibitors; Angiotensin receptor blockers; Bradykinin storm

Abbreviations: ACEIs: Angiotensin converting enzyme inhibitors; ARBs: Angiotensin receptor blockers; COVID-19: Coronavirus Disease-2019

Introduction

Numerous studies have confirmed that the widely used angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) are not associated with increased morbidity or mortality of COVID-19 and some have suggested that these drugs might have a mortality benefit [1-3]. Similarly, these drugs were neither associated with an increased likelihood of COVID-19 infection [4]. However, a recent meta-analysis has suggested more benefits when patients receive ACEIs over those who received ARBs as regards the likelihood of COVID-19 infection and pneumonia-related mortality in non-COVID patients [5] and we would like to warn against this suggestion from a clinical and pharmacological point of view.

Regardless of the important limitations of this meta-analysis that might have affected its results and are expected to be challenged in other meta-analysis studies, ARBs have a COVID-19 huge advantage as they do not increase the levels of the inflammatory bradykinin. Notably, a bradykinin storm has been described to be involved in the pathogenesis of COVID-19 respiratory complications [6,7]. Thus, it is rational to suggest that ARBs are superior to high dose ACEIs for management of COVID-19 patients who complain of serious pulmonary manifestations [8] and a case-control study has suggested that pharmacological inhibition of the kinin-kallikrein system might be used safely to manage COVID-19 [9]. Moreover, we would like to repeat our

recommendation that the clinical interpretation of theoretical suggestions should be done with extreme caution as we cannot afford another catastrophe in COVID-19 management that might cost precious lives [10].

Conclusion

Though ACEIs and ARBs are currently acknowledged for being equally safe in the management of COVID-19, ACEIs high doses might contribute to the bradykinin storm described in serious COVID-19 cases, and thus, a clinical and pharmacovigilant personalized risk-benefit ratio might prefer ARBs over ACEIs in COVID management of high-risk groups.

Competing interests

None

Acknowledgments

This research received no external funding.

References

- Tajbakhsh A, Gheibi Hayat SM, Taghizadeh H, et al. (2021) COVID-19 and cardiac injury: clinical manifestations, biomarkers, mechanisms, diagnosis, treatment, and follow up. Expert Rev Anti Infect Ther 19: 345-357. https://doi.org/10.1080/14787210.2020.1822737
- 2. Spaccarotella C, Mazzitelli M, Migliarino S, et al. (2021) Therapy with RAS inhibitors during the COVID-19

- pandemic. J Cardiovasc Med (Hagerstown) 22: 329-334. https://doi.org/10.2459/JCM.000000000001160
- 3. Lee HW, Yoon CH, Jang EJ, et al. (2021) Renin-angiotensin system blocker and outcomes of COVID-19: a systematic review and meta-analysis. Thorax 76: 479-486. http://dx.doi.org/10.1136/thoraxjnl-2020-215322
- 4. An J, Wei R, Zhou H, et al. (2021) Angiotensin Converting enzyme inhibitors or angiotensin receptor blockers use and covid 19 infection among 824 650 patients with hypertension from a us integrated healthcare system. J Am Heart Assoc 10: e019669. https://doi.org/10.1161/JAHA.120.019669
- Chu C, Zeng S, Hasan AA, et al. (2021) Comparison of infection risks and clinical outcomes in patients with and without SARS-CoV-2 lung infection under renin-angiotensinaldosterone system blockade: Systematic review and metaanalysis. Br J Clin Pharmacol 87: 2475-2492. https://doi. org/10.1111/bcp.14660
- Mariappan V, Manoharan PS, Pajanivel R, et al. (2021) Potential biomarkers for the early prediction of SARS-COV-2 disease outcome. Microb Pathog 158: 105057. https://doi. org/10.1016/j.micpath.2021.105057

- Karamyan VT (2021) Between two storms, vasoactive peptides or bradykinin underlie severity of COVID-19? Physiol Rep 9: e14796. https://doi.org/10.14814/phy2.14796
- 8. Szekacs B, Varbiro S, Debreczeni L (2021) High-dose ACEi might be harmful in COVID-19 patients with serious respiratory distress syndrome by leading to excessive bradykinin receptor activation. Physiol Int. https://doi.org/10.1556/2060.2021.00007
- Mansour E, Palma AC, Ulaf RG, et al. (2021) Safety and outcomes associated with the pharmacological inhibition of the kinin-kallikrein system in severe COVID-19. Viruses 13: 209. https://doi.org/10.3390/v13020309
- Kelleni MT (2020) ACEIs, ARBs, Ibuprofen originally linked to COVID-19: the other side of the mirror. Inflammopharmacology 28: 1477-1480. https://doi.org/10.1007/s10787-020-00755-x