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Commentary
It is well known that cancer cells are much more dependent on 
the glycolytic pathways and glycolysis-based energy metabolism 
(“Warburg Effect”) [1-5]. This makes it possible that glycolysis 
abolishing using various substances/inhibitors may specifically 
influence cancer cells, expecting a new strategy for tumor 
therapies [6-17]. In this context, it can be stressed that the 
possible influences of glycolysis inhibition/inhibitors on the 
mitochondrial respiratory function, their morphology, and 
intracellular organization were not known. In addition, it has 
also been implied that glycolysis inhibition could help overcome 
chemoresistance problems [18,19] (e.g. frequently observed 
resistance to anticancer drugs doxorubicin or 5-fluorouracil). 
However, the study of Kuznetsov AV, et al., where they tried to 
check all these propositions, did not confirm them. Instead, the 
authors found significant and interesting changes in mitochondrial 
functional and morphological properties as an adaptation 

response to the glycolysis inhibition and ATP depletion. The 
authors investigated the comparative effects of 2-deoxy-D-glucose 
(2-DG, a glucose analog, which suppresses cellular glycolysis) 
on cellular bioenergetics in human colon cancer DLD-1 cells, 
smooth muscle cells (SMS), human umbilical vein endothelial 
cells (HUVEC), and HL-1 atrial cardiomyocytes. In all cells, 2-DG 
treatment resulted in significant ATP depletion; nevertheless, 
the cells’ viability stayed unchanged. In addition, the authors 
did not notice any synergistic effects of glycolysis inhibition with 
anticancer drugs doxorubicin and 5-fluorouracil.  Consequently, 
the author’s findings were not consistent with the previous 
ideas that glycolysis inhibition may be beneficial in solving the 
chemoresistance problem. Interestingly, and rather unexpectedly, 
glycolysis inhibition and ATP depletion after 2-DG treatment 
significantly enhanced mitochondrial respiratory activity/capacity 
(both endogenous and uncoupled respiration at quite constant 
mitochondrial mass) in living cells, together with the substantial 
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increase in the mitochondrial inner membrane potential (Δψm).

Importantly, in some cells, the activation of mitochondrial 
functional state, due to glycolysis inhibition, was concurrent 
with the changes in mitochondrial morphology and intracellular 
organization, analyzed by confocal fluorescent imaging, in the 
direction of mitochondrial network creation. 

Accordingly, the authors found that glycolysis inhibition induces 
a remarkable increase in mitochondrial fusion machinery proteins 
Mfn1 and Mfn2, in parallel with a decrease in a fission protein 
Drp1 and therefore leading to the shift between fusion and 
fission. These findings indicate that in cells it could be a strong 
association between mitochondrial intracellular organization/
morphology with mitochondrial functionality (respiration and 
ΔΨm). Besides, it is known that mitochondrial fragmentation 
can be an early apoptosis sign, probably also with decreased 
mitochondrial functional activity. It is thought that the study of 
Kuznetsov AV, et al. may represent one of the first analyses of 
the simultaneous changes in the main functional properties of 
mitochondria and the structure/organization of these organelles 
during energy stress and glycolytic ATP deprivation. The authors 
have proposed therefore that in some cells, the functional 
activity of the mitochondrial network can be higher than that in 
disconnected, fragmented mitochondria.

Using high-resolution respirometry of living cells, together with 
confocal fluorescent imaging analysis of the mitochondrial 
organization and expression of mitochondrial fusion-fission 
proteins (Mfn1, Mfn2, and Drp1) authors afford the evidence of 
tight-fitting associations between the mitochondrial structure and 
their main functions. This is in a line with previously published 
data, showing that ATP depletion by the inhibition of glycolysis 
may activate the mitochondrial function, suggesting also that this 
activation may compensate for the lack of ATP [20-24] and that 
mitochondrial fusion is predominantly essential in cells of high 
respiratory activities. This phenomenon may work also against the 
accumulation of mitochondrial mutations. Also, analysis of the 
effects of energy substrates and their availability (assessed in the 
human cancer cell line, HeLa) on mitochondrial function and 
structure has shown that they can regulate the balance between 
glycolysis and mitochondrially produced ATP [25-28]. These 
studies demonstrated a complex and cooperative response of 
mitochondria to energy substrates availability.

So, changes in the mitochondrial structure-function (remodelling 
of mitochondria) can be involved in the mechanisms of their 
adaptation to variable metabolic demands. This provides a 
link between mitochondrial dynamics and the balance of 
energy demand/supply, regulating cell metabolic efficiency 
and mitochondrial respiratory capacity [23,24]. Therefore, 
several studies imply the existence of a relationship between 
mitochondrial biogenesis, their function, and structure in various 
cells (muscles, beta cells, COS-7, etc., reviewed by Picard M, et 

al. [20]). Moreover, the study of Kuznetsov AV, et al. suggests 
that remodelling of highly dynamic mitochondria may take place 
in, and be a part of molecular mechanisms of various cellular 
processes, like energy stress, oxidative stress, calcium overload, etc. 
and involved in various pathologies and diseases. 

In addition, the results of this study show that AMPK (a 
critically important cellular energy sensor) can be activated after 
energy depletion with increased levels of p-AMPK. Although 
the molecular basis of this phenomenon is not clear, some 
participation of mitochondrial dynamics fusion-fission proteins 
in the cellular AMPK activation may play a role, can be involved 
in these mechanisms, and require further investigation. 

Conclusion
Summarizing, the work of Kuznetsov AV, et al. demonstrates that 
crosstalk exists between structural reorganization and functional 
remodelling of mitochondria in response to 2-DG treatment 
and glycolysis inhibition due to adaptation of cells to the energy 
deprivation. The main question remains unanswered: - whether 
the dynamic structure of the mitochondria is remodelled due to a 
higher mitochondrial activity, or rather a specific mitochondrial 
structure (networks) possesses a higher mitochondrial respiratory 
capacity. The authors mentioned that future studies are needed 
to establish cause-and-effect relationships between structural and 
functional remodelling of mitochondria.
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