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Description
The study of Kuznetsov et al. gives an overview of the several 
specific mitochondrial mechanisms involved in the myocardial 
ischemia-reperfusion (IR) injury. The authors show that 
mitochondrial damage may cause heart dysfunction through wide 
variety of molecular mechanisms, including energy stress (lower 
ATP levels), elevated reactive oxygen species (ROS) generation, 
such as: superoxide anions, hydrogen peroxide (H2O2), hydroxyl 
radicals and peroxynitrite, all leading to the progression of 
oxidative stress [1]. Furthermore, mitochondrial damage is 
associated with excessive release of apoptosis-activated factors, 
resulting in programmed cell death [2-5]. Disturbances in ionic 
balance, particularly an increase in mitochondrial and cytoplasmic 
Ca2+, stimulates mitochondrial permeability transition (MPT) 

accompanied by the opening of non-selective channels, known 
as the pores (MPTP) that allow free movement of ions and 
other solutes across the inner mitochondria membrane. As a 
result, MPTP opening enhances osmotic pressure in the matrix, 
leading to mitochondrial swelling, associated with the activation 
of proteases and lipases that eventually causes cell death and 
cardiomyocytes loss in the heart [6-8]. In addition, decreased 
mitochondrial function leads to a low level of cellular ATP, 
together with elevated Ca2+, both resulting in cardiomyocyte 
super-contracture, disruption of cell membrane and therefore 
necrotic cell death [8]. However, due to the complex relationship 
between decreased cellular ATP level and increased ROS and 
Ca2+, precise consequences of these events are not completely 
understood. Therefore, the exact relationship between organ 
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Abstract:
Mitochondria are central in the cellular production of energy in form of ATP by oxidative phosphorylation. In addition, these or-
ganelles perform many other important cellular function, such as generation of reactive oxygen species (ROS), cell signaling, calcium 
homeostasis and apoptosis. Moreover, mitochondria play a critical role, and have been shown to be directly involved in many aspects 
of pathophysiology, including various diseases, aging, and ischemia-reperfusion (IR) injury, particularly in myocardium. They partici-
pate in energy and oxidative stresses, elevated calcium, leading to apoptotic and/or necrotic cardiomyocyte cell death. In the paper of 
Kuznetsov et al., the role of mitochondria in the molecular mechanisms of cardiac IR injury is extensively discussed. This theme also 
includes the possible important roles of mitochondrial dynamics, functional specializations of mitochondria and their heterogeneity. 
The authors suggested that distinct mitochondrial subpopulations might have different sensitivities to diseases and cardiac IR injury. 
The authors conclude therefore that due to multi-factorial damage, also multiple cardioprotective interventions, which influence 
function, stability and fission-fusion dynamics of mitochondria should to be considered. These can include different pharmacologic 
approaches and strategies (e.g. pre- or post-ischemic conditioning), specific antioxidants, mitochondrial uncouplers and agents against 
mitochondrial permeability transitions (MPT) to protect mitochondrial and cardiovascular function.
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tabolism; Preconditioning; Reactive oxygen species
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dysfunction and mitochondrial impairment is not simple and 
certainly is not limited to the failure in ATP production. Rather, 
mitochondrial damage can affect cell viability in several ways, 
including different signaling mechanisms that can communicate 
with each other in response to specific stimuli.

It is known that mitochondria may represent separated organelles 
or they can be organized in mitochondrial networks. Moreover, 
specific mitochondrial quality control may use the mitochondrial 
fusion and fission dynamics to remove damaged or incorrect 
organelles (e.g. mitochondria with low membrane potential) [9-13]. 
Mitochondria play a key role in the pathogenesis of cardiovascular 
diseases such as IR injury, loss of cardiomyocytes, leading to the 
heart failure and various cardiomyopathies [14-18]. Mitochondria 
are central in the induction of apoptotic and necrotic cell death 
and cell injury, associated with oxidative stress due to protein, 
lipids and DNA oxidation, although at low, physiological 
concentrations ROS can participate in the important cell signaling 
mechanisms [18-20]. Therefore, new pharmacological agents and 
conditional strategies (e.g., ischemic pre-conditioning and post-
conditioning) specifically designed to modulate and stabilize 
mitochondria, can provide effective therapeutic approaches to 
prevent cell and organ dysfunction in response to pathological 

stimuli. This is especially important for organs with high-energy 
demands such as heart, where mitochondria occupy more than 
one third of the total cell volume, and where they provide 
most energy for the heart function. The authors summarized 
and discussed the main regulatory aspects of mitochondrial 
physiology: function, intracellular organization, dynamics, and 
the role of mitochondrial interactions with other cellular systems 
such as ER and cytoskeleton. The important role of energy 
transfer systems like creatine kinase is emphasized. The authors 
discuss the role of mitochondria in cardiac dysfunction during 
coronary heart diseases, particularly focusing on cardiac IR injury. 
Mitochondria can be significantly damaged during either normo-
thermic or cold- (during organ preservation) IR injury [21-28]. 
The authors stressed that mitochondrial dysfunction might play 
a key role in the pathogenesis of these injuries [3,16,17,29]. Both 
mitochondria and the energy transfer systems may deteriorate 
under pathological conditions leading to severe cardiac injury 
where the lack of oxygen and substrates stops mitochondrial 
respiratory function, leading to collapses of membrane potential, 
swelling of mitochondria, Ca2+ overload, cytochrome c release, 
disruption of cellular membranes and finally cell necrosis by cell 
super-contracture [30]. Thus, mitochondria may play central roles 
in both types of cell death - necrosis and apoptosis.

The authors emphasize also that cardiac cells have at least three 
different mitochondrial subpopulations, such as perinuclear, 
intermyofibrillar and subsarcolemmal with different specific 
functions, different shape, size and cristae assembly [31,32]. 
Notably, these mitochondrial subpopulations not only differ 
by morphology or biochemical properties, but they may also 
have different region-specific specializations depending on their 
intracellular localization/environment and particular cellular 
demands. Authors suggested thus that distinct mitochondrial 
subsets, clusters, or even single mitochondria may perform diverse 
tasks for specific cellular requirements [33-36]. For instance, 

monitoring flavoprotein autofluorescence, a higher oxidation 
of subsarcolemmal mitochondria was shown [37-39], and they 
may provide energy for various cell membrane pumps, whereas 
intermyofibrillar subsets provide most energy for the contractile 
function. At the same time, perinuclear subpopulations generate 
ATP close to the nucleus, which is important for nuclear import 
[36,40], as well as for a variety of several other nuclear functions. 
Importantly, these specific mitochondrial subpopulations may be 
differently involved in the IR injury [41] or in cardiomyopathies 
[42], showing thus their possible different sensitivity to pathology. 
Therefore, various mitochondrial subpopulations are present in 

Figure 1: Ischemic heart disease.
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the cardiac cells that may be differently involved in physiological 
and pathological processes.

Conclusion
Summarizing, the work of Kuznetsov et al. demonstrates that 
mitochondrial damage and dysfunction are essential in the 
molecular mechanisms leading to IR injury of the heart. The 
scientific information obtained from mitochondrial physiology 
research can be used in the basic and clinically oriented studies, 
as well as for the development of new diagnostic approaches and 
for cardioprotection in the IR. Moreover, the authors stressed 
that a better understanding of the molecular mechanisms 
responsible for mitochondrial damage in IR may provide the basis 
for interventional strategies aimed at the improvement of heart 
preservation in organ transplantation enhancing heart recovery. 
Finally, the authors declare that the detailed characterization 
of the molecular mechanisms implicated in mitochondrial 
physiology and pathology will certainly help in the development 
of several new therapeutic approaches.
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